CCDPUL STATUS 27sep05 JSF - Begin with a list of setup cuts; want to check performance of ttccd_cut (imported from Bipul's '97 analysis) - pscut02 (beam cuts); - kcuts (kinematics); - -PV_noTG(inverted PV cut, no explicit TG PV) ## LIST of SETUP CUTS kinematics, utc quality, pion ID COS3D **ZFRF** **ZUTOUT** **RSDEDX** UTCQUAL **RNGMOM** Reversed PV cut (target not included in PV) -PV_noTG **B4DEDX** **BWTRS** B4TRS **B4ETCON** B4CCD **CPITRS CPITAIL** **CKTRS** **CKTAIL** **TGQUALT** **TGZFOOL** **EPITG** PSCUT_02 **EPIMAXK** **TARGF** DTGTTP **RTDIF** DRP **PHIVTX** B4EKZ **TGER** **OPSVETO** **TGEDGE** TIMCON **TGTCON** TIC RV UPV Some target cuts EIC **DELC** KIC **TGGEO** TGQUALT0 **PIGAP** TGB4 DELC6 27-sep-05 ## Learned so far 2nd pulse 'energy' is not in MeV, so applying '97 cut at '1.5' is near threshold (almost certainly difference caused by scale factor in 2002 calibrations) 2nd pulse 'energy' acceptance at kp2 peak 0.73; at km2 peak 0.73 acceptance in pnn2 box varies with ptot: ~0.4 at 180 MeV/c $=> A*R \sim 1.8 @ 180 MeV/c$ 27-sep-05 - There are some logical problems that it might be nice to understand: - In 2002 data (and earlier data, as well), some of the 2nd pulses found by fitter are already included in npi_tg, npiop_tg, npvtg arrays - This means that there will be some events cut by some setup cuts - ~OK, if we're only concerned with additional rejection of ttccd_cut; but not OK if we want to understand 'efficiency' of the fitter 27-sep-05 • For example: toss out ccdpul cuts, and use: ``` do j=1,npi_tg do i=1,nk_tg if(elpi_tg(j).eq.elk_tg(i))then if(epi_tg(j).gt.1.5)return endif enddo enddo ``` - Acceptance ~kp2 peak ~0.93 (no loss till delco ~15ns) - Acceptance ptot~160 MeV/c ~0.90 - and see no dependence on ptot